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The modular automorphism group of a Poisson manifold 

Alan Weinstein ’ 

Abstract 

The modular flow of Poisson manifold is a l-parameter group of automorphisms determined 
by the choice of a smooth density on the manifold. When the density is changed, the generator 
of the group changes by a hamiltonian vector field, so one has a I-parameter group of “outer 
automorphisms” intrinsically attached to any Poisson manifold. The group is trivial if and only if 
the manifold admits a measure which is invariant under all hamiltonian flows. 

The notion of modular flow in Poisson geometry is a classical limit of the notion of modular 
automorphism group in the theory of von Neumann algebras. In addition, the modular flow of 
a Poisson manifold is related to modular cohomology classes for associated Lie algebroids and 
rymplectic groupoids. These objects have recently turned out to be important in Poincark duality 
theory for Lie algebroids. 
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1. Introduction 

The modular automorphism group of a von Neumann algebra A is a 1 -parameter group of 
automorphisms of A which, modulo inner automorphisms, is canonically associated to A. 
Since Poisson manifolds can be thought of as “semiclassical limits” of operator algebras, it 
is natural to ask whether they, too, have modular automorphism groups. This paper will show 
that they do. Thus, in the terms of Connes [4], Poisson manifolds are, like von Neumann 
algebras, intrinsically dynamical objects. It appears that the study of the modular vector 
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field will give some geometric insight into the modular automorphisms of von Neumann 
algebras, as well as being a useful tool in Poisson geometry. 

The modular theory of von Neumann algebras has its origins in the KMS theory in 
quantum mechanics and the closely related Tomita-Takesaki theory. In these theories, a 
l-parameter group of automorphisms is related to a positive linear functional. The inde- 
pendence modulo inner automorphisms of the l-parameter group is the content of Connes’ 
noncommutative Radon-Nikodym theorem and was extensively exploited by him for the 
classification of Type III factors. We refer to [4] for a discussion of this material, with an 
extensive list of references. 

I have been interested for many years in trying to understand the classical limit of modular 
theory, stimulated by two sources. The first is the similarities between KMS theory and 
symplectic geometry appearing throughout Renault’s book [23] (which was also a principal 
stimulus for the development of the theory of symplectic groupoids). The second is the 
work of Lichnerowicz and his collaborators as reported in [ 11. This interest was revived 
in recent discussions with Dimitri Shlyakhtenko, who called to my attention the paper 
[24] in the attempt to interpret some of its contents in terms of symplectic linear algebra. 
By “Poissonizing” some of the constructions in that paper, I arrived at a definition of the 
modular automorphism group which is purely geometric. 

In fact, I soon discovered that the infinitesimal generator of the modular automorphism 
group has already appeared in Poisson geometry - it is the curl (“rotationnel” in French) 
of the Poisson structure. Introduced without a name by Koszul [ 121, who already noted its 
modular nature in the case of the dual of a Lie algebra, the curl was named in [7], where 
it was used in the classification of quadratic Poisson structures (see also [14]). Finally, 
Brylinski and Zuckerman have recently studied the modular vector field in the context of 
complex analytic Poisson geometry [3]. 

For background material on Poisson manifolds and operator algebras, we refer the reader 
to [30] and [4], respectively. 

2. Definition of the modular vector field 

Let P be a Poisson manifold with Poisson tensor n, and choose a positive smooth density 
p on P. To this data we associate the operator @p : f H div, Hf, where Hf is the hamilto- 
nian vector field of f, and the divergence div,t of a vector field c is the function Ccp/p. 
(Cc is the Lie derivative by <.) Although $p appears to be a second-order operator (a kind 
of “laplacian”), a simple computation using the antisymmetry of the Poisson tensor shows 
that $p is in fact a derivation and hence a vector field; we call it the modular vectorJield of 
(P, n) with respect to the density p. A further calculation shows that C$, p and .&rr are 
both zero. 2 

The modular vector field & is zero precisely when p is an invariant density for the flows 
of all hamiltonian vector fields. In this case, we simply refer to p as an invariant density 

for the Poisson manifold, and we call the Poisson manifold unimodular. 

* See Section 5. 
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If we replace ,u by ap, where a is a positive function, the modular vector field becomes 

(ba,l = 4,r + H- tog u We conclude that the modular vector field is well-defined modulo 
hamiltonian vector fields. In other words, the set of modular vector fields for all possible 
positive densities is an element of the lirst Poisson cohomology space of P (Poisson vec- 
tor fields modulo hamiltonian vector fields). We call it the modular class of the Poisson 
manifold. It vanishes just for unimodular Poisson manifolds. 

In algebraic terms, the modular class is a derivation of the Poisson algebra C”(P). mod- 
ulo inner derivations. When we integrate a particular modular vector field (assuming it to be 
complete), the result is a 1 -parameter subgroup in the group Aut( C”( P)) of automorphisms 
of the Poisson algebra which is intrinsic modulo the subgroup Auta(CX( P)) consisting of 
those automorphisms obtained by integrating time-dependent hamiltonian vector fields. 
More precisely, the flows of @I* and &,lc are related by a canonical I-cocycle on [w with 
values in the group f(P) of exact lagrangian bi-sections of the symplectic groupoid of P. 
(See Section 7, where we will also explain how the elements Auta(C”( P)) play the role of 
inner automorphisms. A hint of this relation is already given in 1231: the group r(P) is in 
some sense the classical limit of the unitary group in the multiplier algebra of the algebra 
whose classical limit is C”(P).) 

The modular vector field can also be viewed [ 121 as the result of applying a differential 
operator to the Poisson tensor itself. A smooth density /L on P sets up an isomorphism (Y ++ 
(YJ/L (defined modulo a local choice of sign, which disappears in what follows) between 
differential forms and multivector fields on P, so that the exterior derivative becomes an 
operator on multivector fields. Applying this to the bivector held rr yields its modular vector 
field. 

When the modular vector field is zero, the form rr~p is closed and therefore defines a 
deRham cohomology class, which is dual to a homology class in H2( P. 5%). ’ As p runs 
over all choices of invariant densities, we obtain aconvex cone in H2( P, R) whose elements 
may be called the,fundamenra/ cycles of the Poisson structure. If there exists an invariant 
density of finite total volume, we can restrict attention to invariant densities of total measure 
1. in which case we obtain another convex set - the normalized fundamental cycles. We 
discuss these invariants in further detail in Section 9 below. 

The modular vector field is also related to the canonical homology of Koszul and Brylinski 
(see [ 12,30]), given by the complex in which the chains are differential forms and the 
boundary operator is 6 = i, o d - d o i,. Suppose that P is oriented, so that we can 
identify densities with differential forms of top degree. A density /J is thus a top-dimensional 
chain for Poisson homology. Its boundary 6,~ is equal to - d(?rAp) = -rr~$,~. Thus. the 
modular vector held corresponds to the ( d and 6 exact) II - 1 form 61-( = - d(?r 3,~ ). In the 
unimodular situation, an invariant density I_L is a cocycle and thus defines a nonzero element 
of the top-degree Poisson homology of P. Also note that the zeroth Poisson homology 
C”(P)/(C”(P). C”(P)} is dual to the “traces” on C”(P). Such (smooth) traces are 
given precisely by the invariant densities. (See Section 3 below.) 

3 Here we must assume P oriented or use twisted coefficients. 
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This relation between Poisson homology spaces in complementary dimensions is ev- 
idently related to Poincare duality. In fact, such duality (or at least a pairing) has been 
studied recently by Evens et al. [8], as well as by Brylinski and Xu. 

3. Relation to operator algebras 

For a von Neumann algebra A, the point of departure for the definition of the modular 
automorphism group is the choice of a weight: a certain type of positive linear functional 
on A. The modular automorphism group measures the extent to which the weight fails to be 
a trace, i.e. to vanish on commutator brackets. According to the noncommutative Radon- 
Nikodym theorem, any other weight is related to the first by the inner automorphisms 
associated to a cocycle, with values in the unitary group of A. 

Weights on the Poisson algebra of a Poisson manifold P are by definition positive (Borel) 
measures on P. To fix a measure class (which corresponds to the selection of a particular 
enveloping von Neumann algebra for an incomplete *-algebra), we choose the smooth 
densities. (A discussion of more general densities, and the corresponding modules obtained 
by a Poisson version of the GNS construction, is planned for [33].) Now recall that the 
modular vector field measures the extent to which hamiltonian vector fields are divergence 
free. Since, for compactly supported g, we have by Stokes’ theorem 

it follows that the modular vector field also measures the extent to which integration with 
respect to p vanishes on Poisson brackets (with at least one entry compactly supported), 
i.e. when integration with respect to p fails to be a “Poisson trace”. 

The relation 

J 
(I./-? R] - (&Q)R)P = 0 

P 

is called the in$nitesimal KMS condition relating the weight ,LL to the vector field +,1. 

4. Some examples 

The modular class of a symplectic manifold is zero. In fact, the Liouville density associ- 
ated to the symplectic structure is invariant under all hamiltonian flows, so the corresponding 
modular vector field is zero. If we take instead the density a~, where p is the Liouville 
density, we obtain as modular vector field the hamiltonian vector field H-loft,. Writing E 
for the hamiltonian - log a, we find a natural association between the hamiltonian flow of 
the function E and the density epE v. This association, familiar in classical statistical me- 
chanics, was the starting point for the development of the KMS theory in quantum statistical 
mechanics, which was subsequently shown to be essentially equivalent to Tomita-Takesaki 
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theory. (A geometric interpretation of the KMS theory in terms of conformal deformations 
of Poisson brackets and their quantizations was given in [ 11.) 

If P is the dual of a Lie algebra 3, with its Lie-Poisson structure, the modular vector 
field with respect to any translation-invariant density is the constant vector field with value 
trad, the trace of the adjoint representation, or modular character of the Lie algebra. (This 
was already observed in [ 121.) In particular, the modular class of a* is zero just when Q is 
unimodular, since a hamiltonian vector field must vanish at the origin in any Lie-Poisson 
structure. This fact motivates our use of the term unimodular to describe Poisson structures 
with zero modular class. (Such structures were called “exact” in [ 141.) 

At any singular point of a Poisson manifold, the projection of the modular vector field into 
the normal space of the symplectic leaf is equal to the modular character of the transverse 
Lie algebra. Consequently, the transverse Poisson structure (and hence the Poisson structure 
itself, at least locally) admits a l-parameter group of symmetries in this direction, even if 
the transverse structure is not linearizable. (See 131,321 for discussion and examples of 
nonlinearizable structures.) 

If P is 2-dimensional, with Poisson structure given in coordinates by (s, .v) = ,f’(_r, x). 
then the modular vector field with respect to p = 1 dx A dy) is the same as the hamiltonian 
vector field for ,f’ with respect to the cannnical brackef [x. y} = 1. In particular, the modular 
vector held is tangent to the zero level of ,f. which is the singular set of the Poisson structure. 
and the restriction of the modular vector field to this singular set is invariantly attached to 
the Poisson structure. 

For the Lie-Poisson structure on IR’ with defining relation {x. .v] = .v. the modular flow 
with respect to translation-invariant measures is given by translations in the .r-direction. 
The upper half plane H+ in this space is a symplectic manifold. The smooth measures on 
Hf with smooth continuations to R’ could be thought of as a measure class on H+ with 
distinguished behavior “at infinity”, giving rise to a nontrivial modular flow at infinity. 

The Poisson manifolds with boundary which are locally equivalent to the product of 
the upper half plane with symplectic manifolds are exactly the b-symplectic manifolds of 
Nest and Tsygan [22], arising by generalization from the b-cotangent bundles of manifolds 
with boundary studied by Melrose [ 191. The modular vector held on the boundary gives 
the obstruction to the existence of a trace on algebras of b-pseudodifferential operators. or 
more generally on quantized Poisson algebras of b-symplectic manifolds. 

As was noted and exploited in (7,141, the modular vector field of a quadratic Poisson 
structure on a vector space (with respect to translation-invariant measures) is a linear vector 
field (which is an invariant of the modular class). For instance, the modular flow for the 
structure (x. .I’) = x2 + .v* consists of rotations around the origin. Again, we could consider 
this as the modular flow at “infinity” (here represented by the origin) for the symplectic 
structure on the punctured plane, with boundary conditions determined by extendibility 
over the puncture. This Poisson structure is also the local model for the singularity of the 
Bruhat-Poisson structure on S*. (See [ 161.) 

The modular vector field has also been calculated in [8] for the Bruhat-Poisson structures 
on higher-dimensional flag manifolds, as well as for the related compact Poisson Lie groups. 
The nonvanishing of the modular class for these manifolds seems to be related to the fact 
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that the “Haar measure” on the corresponding quantum groups is not a trace, but rather 
satisfies a KMS-type condition in which the modular automorphism is related to the square 
of the antipode. The recent paper [ 181 contains an extensive discussion of quantum groups 
from the von Neumann algebra point of view; a study of this paper from the Poisson algebra 
point of view should give some new insight both into quantum groups and their classical 
limit. It would also be interesting to interpret the modular vector field on the flag manifold 
in terms of the geometry at infinity of the “big cell” (an open dense symplectic leaf). 

We close this section with a possible application of the modular class. Tuynman [29] has 
pointed out a correction which should be made to geometric quantization in order to make it 
compatible under reduction by a nonunimodular group G acting on a symplectic manifold P. 
It seems that there should be an interpretation of his results in terms of the nonunimodularity 
of the Poisson manifold g* and that of P/G, which is Morita equivalent to g* when the 
G action is free. In fact, the first Poisson cohomology spaces of Morita equivalent Poisson 
manifolds are isomorphic, according to Ginzburg and Lu [lo], and Ginzburg [9] has shown 
that the modular classes are compatible with this isomorphism. 

5. Regular Poisson manifolds 

Near any regular point x on a Poisson manifold, we can introduce canonical local coor- 
dinates and hence a measure which, near x, is invariant under all hamiltonian flows. The 
modular vector field with respect to this measure is therefore zero near x. Since x is arbi- 
trary, the modular vector field with respect to any measure is locally hamiltonian throughout 
the set of regular points of P. 4 In particular, any modular vector field is tangent to all the 
regular symplectic leaves. 5 

On the other hand, global conditions can cause the modular class of a regular Poisson 
manifold to be nonzero. For example, we consider the regular Poisson structures on R2 x S’ , 
with coordinates (x, y, 0), of the form 

where g(x) = 0 just at x = 0. The symplectic leaves for this structure consist of the cylinder 
C defined by x = 0 and a family of planes which spiral around this cylinder. 

For p = de A dx A dy, we have rr~p = dx + g(x) de, d(rr+) = g’(x) dx A de, and 
hence @IL = -g’(x)(a/ay). If g’(0) # 0, the restriction of #p to the cylinder C is a nonzero 
multiple of alay, which is not hamiltonian, so the modular class of this Poisson structure 
is nonzero. Perhaps more surprising is that, if g’(0) = 0, @cL is still not hamiltonian, even 

4 In [3], the modular vector field is considered as a section of a sheaf of Poisson module hamiltonian vector 
fields, so that it is actually supported on the set of singular points. An advantage of this framework is that the 
modular vector field is defined even when there is no global volume element, a situation which often occurs 
in the holomorphic setting. 

’ Since the regular points of any Poisson manifold form a dense subset, this argument also gives a quick 
proof that LQ,, /L and Q,, rr are zero on all of P 
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though its restriction to each symplectic leaf is hamiltonian. (It is zero on C, and each of the 
remaining leaves is simply connected.) To see this, we look at the most general hamiltonian 
vector field 

lf Hf is to equal 4y, we must have 

To see that this is impossible, we introduce the averaged hamiltonian function F(x) = 
liTI ,f(x, y, 0) d0 (independent of y by the first equation above), and we integrate the 
second equation above with respect to 8 to get 

&)F’(x) = g’(x). 

For x # 0, we have F(x) = In ]g(x)] + C, where C is constant on each semiaxis. As 
s -+ 0, g(_r) + 0 implies that F(x) + CO, which is impossible if f is continuous. 

The modular vector field of a regular Poisson manifold is closely related to an object 
which depends only on the foliation by symplectic leaves. If 3 is a foliation on P with 
tangent bundle F c T P, we can define its modular class in the following way. Choose a 
smooth transverse positive density v for 3; i.e. a nowhere-vanishing section of the highest 
exterior power of the normal bundle T P/F (which for simplicity we assume to be oriented 
_ otherwise the usual twisting by an orientation bundle is needed). If we denote by V the 
Bott connection of the foliation (extended to densities), then Vv/v is a well-defined closed 
(because the Bott connection is flat) l-form along the leaves of 3, which we will denote by 
qL,_ The integral of tiv around a loop in a leaf of 3 is the logarithm of the determinant of the 
linearized holonomy of the loop, and form I,!J” is zero exactly when v defines an invariant 
transverse measure to the foliation. If we multiply v by a positive function u, I/J,, changes 
to $,, + dF(ln a), so that [+“I is a well-defined class in the tangential cohomology of the 
foliation 3’. which we call the modular class of the,foliation. 

On any regular Poisson manifold, multiplication by the canonical symplectic density 
along the leaves gives a l-l correspondence between the transverse densities to the sym- 
plectic leaf foliation and the densities on the ambient manifold. Given a transverse density 
v, we can apply the Poisson tensor to the closed form @IV along the leaves to obtain a locally 
hamiltonian vector field tangent to the leaves which is precisely the modular vector held 
@LL associated to the density p corresponding to v. 

When the symplectic leaf foliation is co-oriented of codimension 1, a transverse density 
is given by a 1 -form A which annihilates the leaves. Integrability means that dh = (Y A h for 
a I -form cx defined up to a multiple of h. The restriction of a to the leaves depends only on 
h and is in fact $A. When the Poisson structure is unimodular, the form h. can be chosen to 
be closed, so that CY A da, which represents the Godbillon-Vey class of the foliation, is zero. 
Hence a nonvanishing Godbillon-Vey class implies nonunimodularity. The much stronger, 
but more difficult to prove, theorem of Hurder-Katok cited in 14, p. 2611, establishes that 
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the nonvanishing of the Godbillon-Vey class implies the nonexistence of any invariant 
transverse measure, smooth or not. 

Y 

Example. On the group PSL(2, R) we have the basis (et, e2, e3) of left-invariant vector 
fields, satisfying the commutation relations 

[ei, e21 = e3, [e3, ell = el, [e3, e21 = --e2. 

These pass to any quotient PSL(2, [w)/T by a discrete subgroup r acting from the left, as 
does the dual basis (WI, 02, ~3). We consider the Poisson structure n = e2 A e3 and the 
density p = WI A w2 A 3, with respect to which the modular vector field is --e2. If r is the 
fundamental group of a compact Riemann surface M, then PSL(2, [w) is the unit tangent 
bundle of M, e3 is the geodesic flow for the Poincare metric, and the foliation by symplectic 
leaves of rr is the foliation by stable manifolds. The symplectic form along the leaves is the 
area form for the natural induced metric on the tangent bundle, and the modular vector field 
is the generator of the horocycle flow! Since et is the direction of the unstable manifolds, if 
we travel around a closed geodesic, the integral of the modular l-form (which is ~3) must 
be nonzero, so the modular class is nontrivial. 

We can easily compute the Godbillon-Vey class in this example. Taking wt as our trans- 
verse density h, we have dwt = 01 A ~3, so CY = -1103, and LY A da = w3 A dog = 
-w3 A wt A ~2, a volume form which gives a nonzero Godbillon-Vey class. 

It is interesting to compare our discussion with that of [4, p. 581. It is stated there that 
when the stable foliation is “suspended’ to the bundle of transverse densities, the resulting 
foliation of type II has the same space of leaves as the horocycle how. We give a geometric 
explanation for this occurrence of the horocycle flow in Section 8. 

The Reeb foliation on S3 provides another instructive example. Its modular class is 
nonzero, since the contractive nature of the holonomy around the central torus precludes 
the existence of a smooth positive invariant transverse measure. However, the linearized 
holonomy is zero around the torus, so the modular vector field can be zero there. Since all 
the other leaves are planes, the modular vector field is hamiltonian on every leaf separately, 
but it is not globally hamiltonian. On the other hand, in this case, the Godbillon-Vey class 
is zero. (See for example [28].) 

The situation for regular Poisson manifolds suggests a point of view for an arbitrary 
Poisson manifold P. A density on P should be thought of as a way of “encoding” a transverse 
measure to the foliation by symplectic leaves, and the modular vector field measures the 
extent to which this transverse measure fails to be “invariant under holonomy”. This point 
of view may shed some light on the problem of defining the notion of transverse structure, 
holonomy, and modular classes for singular foliations. (Compare [6] and [26].) Some further 
insight in this direction may be found in our discussion of Lie algebroids in Section 7. 

Given any foliation of a manifold M, the cotangent bundle P along the leaves is a Poisson 
manifold in a natural way. A transverse density to the first foliation pulls back to a transverse 
density to the symplectic foliation of P, and the modular l-form pulls back accordingly. 
Thus, the modular vector field of the cotangent bundle to a foliation is generated by the 
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pullback of the modular l-form of the foliation. In this way, the modular construction for 
Poisson manifolds is a generalization, as well as a special case (!) of the construction for 
foliations. 

Finally, we note that Mikami [20] has also studied the Godbillon-Vey class in the context 
of Poisson geometry. 

6. Intrinsic completeness 

The modular flow of an operator algebra is always an action of the real numbers. For 
a Poisson manifold, the modular vector field defines an action of the real numbers only 
when it is complete. For a given Poisson structure, this completeness may depend on which 
representative of the modular class is chosen. (For instance, any hamiltonian vector field on a 
symplectic manifold is a modular vector field.) We will call a Poisson manifold intrinsicull~ 
complete if some representative of the modular class is a complete vector field. 

Intrinsic completeness is clearly an invariant property of a Poisson manifold. It would 
be nice to have a striking characterization of this property, and some interpretation of its 
meaning (perhaps in connection with some form of quantization), but we must content 
ourselves here with some examples. 

An open subset of R* with the Poisson structure (x, v) = JJ is intrinsically complete 
if and only if it contains either all or none of the x-axis, since every modular vector field 
is constant and nonzero on that axis. Of course, every symplectic manifold is intrinsically 
complete. On the other hand, even a regular Poisson manifold can fail to be intrinsically 
complete. For instance, although the Poisson structures on R* x S’ described in the previous 
section are intrinsically complete, the restriction to the region /?‘I -C 1 is not intrinsically 
complete when g’(0) # 0. (It is not clear what happens when g’(0) = 0.) This follows from 
the following lemma. 

Lemma 6.1. On the cylinder (- 1, 1) x R with symplectic structure d.v A de, ever? com- 
plete, locally hamiltonian vector field is globally hamiltonian. 

Proq$ Let X be a locally hamiltonian vector field, a = XJ( dv A de). The integral of 
(Y around a loop encircling the cylinder gives the flux of area through the loop under the 
flow of X. Since the cylinder has finite area, this flux must be zero, so (Y is exact, and X is 
globally hamiltonian. 0 

7. Modular classes of Lie algebroids and groupoids 

The foliation and Lie-Poisson examples are special cases of a more general construction. 
Given a Lie algebroid A, the dual bundle carries a natural Poisson structure. The modular 
vector field of this structure with respect to a suitably chosen density is tangent to the fibers 
of A* and translation invariant along each fibre. Thus this vector field can be identified 
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with a section of A*. As such, it is a I-cochain for the Lie algebroid cohomology [ 171 of 
A; it turns out to be a cocycle whose cohomology class is well defined. We have therefore 
attached to each Lie algebroid a modular class in its first Lie algebroid cohomology. 

In fact, this class can be defined directly in terms of the Lie algebroid itself. We summarize 
here the detailed discussion which can be found in [8]. 

Given a Lie algebroid A over P, we introduce the bundle QA = ~topdt%~topT* P. When 
A is an integrable subbundle of T P, this is the bundle whose sections are (not necessarily 
invariant or positive) transverse smooth measures to the corresponding foliation, so we 
should think of sections of Qd in general as being “transverse measures to A." 

It turns out that the “difference” between Lie derivative operators on AtopA* and AQ’T* P 
defines a representation of A on the line bundle QA. Any nowhere vanishing section of this 
line bundle (or its square, in case the “transverse space is nonorientable”) has a “divergence” 
which gives an invariantly defined class (?A, the modular class of A, in the Lie algebroid 
cohomology of A (with coefficients in the trivial line bundle). This construction reproduces 
the class defined above using the Poisson structure on A*. 

Since the cotangent bundle of a Poisson manifold is a Lie algebroid, we can consider the 
modular class of this Lie algebroid. But the Lie algebroid cohomology of T* P is just the 
Poisson cohomology of P, and in fact we arrive back at the modular class of the Poisson 
manifold P itself, if to each density Al. on P we construct a section pee of Qrp by first 
taking the “square” of p as a section of Qrp and then taking its square root in the same 
line bundle. 

We turn now to Lie groupoids. Once again, we give here a brief description of results 
to be presented in more detail in [S]. The modular class of a Lie algebroid is in fact the 
infinitesimalization of the modular class of a corresponding (local) Lie groupoid, which may 
be defined as a ratio of right- and left-invariant “measures,” as in [23, Chap. 1, Section 31. For 
a Lie groupoid with Lie algebroid A we can give a description of the modular class which 
does not require the separate choice of a Haar system and a measure on the base. Instead, we 
choose a section of Qd, which plays the role of these two objects simultaneously. In fact, it 
can be shown that G acts in a natural way on the line bundle Qd, so that a trivialization of 
Qd turns this action into a 1 -cocycle on G, with values in the multiplicative group Rx of the 
real numbers; this cocycle is called the modularfunction of the groupoid with respect to the 
given section. 6 A change of trivialization corresponds to a zero cocycle, whose coboundary 
gives the change in the modular function, so that the modular class is a well-defined element 
of H’(G; R”). Differentiation of this modular class (more precisely, of its representative 
cocycles) along the identities of G gives the modular class of the Lie algebroid A. 

When A is the cotangent bundle of a Poisson manifold P, then the groupoid G can be 
taken to be a symplectic groupoid for P, if it exists. 7 This gives the following picture. Given 
a density p on P, its modular flow * lifts in a natural way to a flow on the symplectic groupoid 

6 Multiplication by powers of this function gives the modular automorphism group of the von Neumann 
algebra of the groupoid; see [23, p. 1151. 

7 See [5] or [30] for a discussion of symplectic groupoids, and [34] for the lifting of Poisson automorphisms 
to groupoid automorphisms. 

* All flows in this paragraph will be local, if necessary. 
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G by symplectic groupoid automorphisms. This lifted flow is hamiltonian and is generated 
by the logarithm of the modular function f on G. When f is the coboundary of a function 
h on P, the logarithm of h is a hamiltonian for the modular flow on P. In this situation, 
we can now give a precise sense in which the modular flow is “inner”. (Compare [23. 
p. 111 I.) Namely, the pullback of f to G by the source map of this groupoid itself generates 
a hamiltonian flow on G which moves the identity section into a 1 -parameter subgroup of 
the group of f(P) of exact lagrangian bi-sections in G. The action of this 1 -parameter 
subgroup by conjugation on G is exactly the lifted modular flow, and its restricted action 
on the identity section is the modular Aow itself. But the group f(P) should be thought of 
as being essentially a classical limit of the unitary elements in the (multiplier algebra of) 
“quantized” algebra whose classical limit is the functions on P. (The Lie algebra of f(P) 
consists of the real-valued functions on P, which is the classical limit of the self-adjoint 
elements of the quantized algebra.) 

We note here that an Rx -valued 1-cocycle 4 on the symplectic groupoid G gives rise to 
a 1 -parameter group of automorphisms of the groupoid algebra of G in two different ways: 
first by multiplication by the powers 4” (see [23]), and second by the hamiltonian flow of 
log ]$I. The relation between these two groups of automorphisms is not completely clear to 
us, but it must somehow involve the passage, via quantization as in [34], from the groupoid 
algebra of G to the quantized algebra of functions on the underlying Poisson manifold P. 

We also remark that the inversion map in the symplectic groupoid G should be the 
canonical transformation underlying the *-operator in the quantized algebra of functions on 
P, but there may also need to be an “amplitude” as in the theory of Fourier integral operators. 
We suspect that this amplitude is related to the modular function via the operator-algebraic 
construction of the latter, as described for instance in [24]. We also suspect a relation with 
the square of the antipode in the “hopfoid algebra” of functions on the groupoid, which 
should lead us back to the ideas about quantum groups mentioned at the end of Section 4. 

8. The flow of weights 

In the theory of von Neumann algebras, the modular flow leads to two ways of passing 
between algebras of type II and type III. In this section, we discuss the Poisson analogs of 
those constructions. 

Given a Poisson manifold P with positive density I_L and corresponding modular vector 
field $@, we can construct the Poisson semidirect product of P by this modular flow (even if 
it is not complete). This Poisson analog of the crossed product of an algebra by a 1 -parameter 
group of automorphisms is defined as follows. 

Given a Poisson vector field 4 on a Poisson manifold P, we define the semidirect prod- 

uct9 to be the quotient of P x T*R by the diagonal action of R, which acts on its own 
cotangent bundle by left translations. Although this construction appears to depend on the 

9 This construction may be found in [13, Section 21, or the appendix of [32]. The name comes from the 
fact that, when P is the dual of the Lie algebra on which a group acts by automorphisms, the construction 
produces the dual of the semidirect product Lie algebra. 
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integration of C#J to a how, we can identify the quotient with P x I%*, on which the induced 
Poisson structure is given purely in terms of the Lie algebra action by the requirement 
that the projections on P and R* be Poisson maps, and that (f, r) = C#J . .f, where f is 
any function on P and r is the standard coordinate on R*. (Our notation has been chosen 
to suggest how this construction can be extended to the case where lR is replaced by an 
arbitrary Lie algebra acting on P by Poisson vector fields.) We denote P x R* with the 
resulting Poisson structure by P x4 lR*. If the vector field C$ is globally hamiltonian, then 
the choice of a hamiltonian function produces an isomorphism between P x4 R” and the 
direct product P x lR* (see [ 131). More generally, the Poisson isomorphism class of the 
semidirect product depends on only the equivalence class of 4 modulo globally hamiltonian 
vector fields. 

Applying the semidirect product construction to the modular flow, we obtain a Poisson 
manifold P x4,, R* which is determined up to isomorphism by the Poisson manifold P 
itself. (This is the Poisson counterpart of a result in [27], where it is established that the 
cross product by the modular flow is weight-independent.) It turns out that P x4& R* is a 
unimodular Poisson manifold; in fact, it is simple to check that p A e’ dt is an invariant 
density. 

The Jlow of weights, denoted by mod(P), is defined to be the flow of the vector field 
a/at on the space of leaves of P x+,, KY*. 

In case P is a regular Poisson manifold, the objects introduced above have a rather 
simple description. The symplectic leaves of P ~6~ R* are coverings of the symplectic 
leaves of P; in fact, they are the parallel (multivalued) sections for a flat connection along 
the symplectic leaves of P on the bundle P x R*. Upon identification of P x lR* with 
the space of transverse densities to the symplectic leaf foliation (via exponentiation and 
multiplication by the transverse density associated with p), this connection is just the 
usual Bott connection. This gives a completely intrinsic description (corresponding to the 
“functorial construction” on p. 496 of [4]) of the semidirect product manifold P x4,, R* 
and hence of the flow of weights: the flow is given by the action of tQ+ by multiplication on 
the “space of multivalued invariant transverse densities” to the symplectic leaf foliation. 

Note that the flow of weights, unlike the modular flow itself, depends on only the sym- 
plectic leaf foliation. In fact, it corresponds precisely to the flow of weights for a foliation 
algebra as described in Proposition 9c on p. 58 of [4]. We also remark that any group of 
Poisson automorphisms of P acts naturally on the flow of weights. 

The second way to pass from a general Poisson manifold to a unimodular one is to 
divide by the modular flow. Of course, the resulting quotient, which we denote by P/c#J~, 
is a manifold, even locally, only if the modular vector field is either identically zero or 
nowhere zero. In the latter case, it can be shown at least formally (i.e. without worrying 
about the global structure of quotient spaces) that the semidirect product P x4, R* is Morita 
equivalent as a Poisson manifold [35] to the quotient space. (Locally, the semidirect product 
is the product of the quotient space by a 2-dimensional symplectic manifold.) 

We can show directly that the leaf spaces of P xep R* and P/c& are isomorphic when 
P is regular and $w is nowhere zero. To do this, we restrict attention to one symplectic leaf 
(3 of P at a time. 
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Let F c T0 be the symplectic orthogonal space to &; it is also the null bundle of the 
closed 1 -form I/J@ corresponding to @p via the symplectic structure on 0. Choose a vector 
held X on c3 such that e,(X) = 1, and let X be its horizontal lift to 0 x [w* for the “Bott 
connection”. X is a complete vector field, and dr(X) = 1 , so the coordinate function r 
is a fibration to Iw* on each leaf of 0 x+~ [Wt. Hence, the intersection of each such leaf 
with r-’ (0) is connected and must be a leaf of the foliation F determined by F. Thus. the 
symplectic leaf space of (3 x++,,, [w* is isomorphic to the leaf space of _7=. On the other hand. 
it is a basic fact about Poisson reduction that the symplectic leaf space of c?/@, is the same 
as the leaf space of F. 

In particular, the symplectic leaf space for P x@~, R* in the example of PSL(2. [w)/ r in 
Section 5 is the same as the space of leaves of the horocycle foliation. (When the symplectic 
leaves of P are 2-dimensional, the bundle F is the same as the span of @p .) This corresponds 
to a similar statement about the horocycle foliation on p. 58 of 141. 

To close this section, we propose the study of the Poisson analog of the invariants R and 
S of von Neumann algebras discussed in [4]. 

9. The fundamental class of a unimodular Poisson manifold 

Let (P, 71) be a unimodular Poisson manifold of dimension n. For simplicity, we will 
assume that P is oriented. lo Beginning with an invariant positive density p on P we 
obtain in succession the closed II - 2-form ~JI_L, the de Rham cohomology class [nip] E 
H”-‘(P: R), and the dual homology class on(p) E H2(P: iw). When P is noncompact, 
we use homology with locally finite chains to insure Poincare duality. 

Let I (P. r) be the convex cone of invariant positive densities, and It (P. IT) its convex 
subset of normalized elements (i.e. satisfying the condition s, p = 1). We say that (P. n ) 
has$nite type when It (P, x) is nonempty. The images of I (P, n) and It (P. x) under a, 
are a convex cone C( P, n)and a convex set Ct (P, ?r), respectively, in H2( P: R) whose ele- 
ments we call the fundamental cycles and normalizedfundamental qcles of the unimodular 
Poisson manifold. 

If (P, 3~) is a connected symplectic manifold of dimension n = 2m with symplectic 
form w, oriented by u”‘, then I (P, n) = (cwm ) c > 0). If P has finite symplectic volume, 
then it is of finite type, and Zl(P, ~7) = {urn/u(M)), where u(P) = 1, wm, which is n! 
times the symplectic volume. Since n JWM = w P’, if we denote by U, the homology class 

dual to w”‘-I, then C(P, 15) is the ray through u,, and Cl (P, IT) consists of the single class 
u,/u(P). Note that the pairing ([WI, u,) is by definition I,, o A o”~’ = u(P), so the 
homology class in Ct (P, or) is normalized so that its pairing with the symplectic class [w] 
equals 1. 

Next suppose that (P, w) is a bundle of 2k-dimensional connected symplectic manifolds; 
i.e. its symplectic leaves are the fibers of a smooth fibration y : P --, M. Let w be a 2-form 

“I Everything we will do also works in the nonorientable case if we use forms. homology. and cohomology 

with twisted coefficients. 
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on P (not necessarily closed) which restricts to the given symplectic structure w(y) on each 
leaf P(y) = v-‘(y). The invariant densities on P are then of the form mk A y*u, where u 
runs over the volume elements on A4 consistent with the orientation of M corresponding to 
a given orientation of P. (This follows from the corresponding fact about the densities on 
an exact sequence of vector spaces.) The corresponding closed form n~(w~ A y*u) equals 
&1 A y*v. 

In terms of the homology maps i(y) : H2( P(y); R) -+ H2( P; R) induced by the inclu- 
sions, the homology class dual to rr,(wk A v*u) is then l, i(y)~,(~)v, so that C(P, n) 
consists of the superpositions (with strictly positive weights) of fundamental cycles of the 
symplectic leaves, inserted into H2( P; W) by the inclusion maps. (These inserted homology 
classes are defined because the inclusions of the fibres are proper maps.) 

Remark. Suppose that rr = 0. Then any w is invariant, but rr+ is always zero, so that 
C(P, 0) = (0). This is consistent with the fact that each symplectic leaf has H2 = (0). 

To determine the normalized fundamental cycles on a bundle of symplectic manifolds, 
we first note that j’, tik A y*v = lM u(P(y))u, so that (P, n) has finite type when the 
symplectic volume function of the leaves is locally L’ on M. In particular, u(P(y)) must 
be finite for almost all y. (Note that the class of locally L’ functions is determined by the 
smooth structure of M. It is independent of u, which can always be chosen to make a given 
locally L’ function have integral equal to 1.) 

Now for u such that uk A y*v is normalized we have 

s i(Yho(?.)V = s GAY) 
i(Y)--- 

U(P(Y)> 
U(P(Y))V, 

M M 

which is the integral over M of the images in H2(P; R) of the normalized fundamental 
cycles of the symplectic leaves, with respect to the normalized measure v(P(y))v. In other 
words, the set of normalized fundamental cycles of P is the “open convex hull” of the 
inserted normalized cycles of the leaves. 

If (P, w) is a finite union of connected submanifolds, possibly of different dimensions, 
then the fundamental cycles are again given by taking convex combinations of the funda- 
mental cycles of the components. 

The examples above suggest that the fundamental cycles for any unimodular Poisson 
manifold should be thought of as some kind of superpositions of fundamental cycles of the 
symplectic leaves. The next example will give some meaning to this viewpoint in the case 
where P is compact, but the symplectic leaves are not of finite type. 

Let P be a 3-torus with a translation invariant Poisson structure rr whose symplectic 
leaves form a foliation by planes, each of which is dense in the torus. In terms of coordinates 
(xl, x2, x3) (defined modulo Z), we can write 

7C= ( &+u& A 
3 > ( &+a2$ , 

3 > 
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where a2 and a3 are irrational and have irrational ratio. The density ,u = b dxl A dxz A dx3 
is invariant only when b is constant and normalized when b = 1; in fact, YT JP = b(dx3 - 
al dxl - a2 dxz), which is closed just when b is constant along the leaves of the foliation. 
If we denote by cij the fundamental homology class of the oriented product of the ith 
and jth coordinate circles, the the homology class dual to (dx3 - aI dxl - a2 dxz) is 
~12 - alcz3 + a2c13. This is the unique normalized fundamental cycle, which generates the 
ray of fundamental cycles. It should be thought of as an inserted fundamental class of any 
leaf. 

The most general Poisson structure having the same symplectic leaf foliation is of the 
form cn for some nowhere vanishing function c. The invariant densities now have the form 
blc-’ Ip for positive b, and the ray of fundamental cycles remains the same (up to the sign of 
c), while the normalized fundamental cycle is multiplied by (sp c-’ F)-‘. This homology 
class is therefore an invariant of the Poisson structure; we refer to [ 111 for a proof that this 
is essentially the only invariant when the symplectic leaf foliation is translation invariant. 

We end this section with a question and a remark. When does the set of normalized 
fundamental cycles have a compact closure? It seems that these cycles might be related to 
Ruelle-Sullivan currents for foliations [25] and related currents for group actions studied 
by Brylinski [2]. 
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